پیش بینی دمای کمینه ایستگاه کرج با استفاده از داده های شاخص های پیوند از دور و شبکه عصبی مصنوعی
Authors
Abstract:
توجه علمی به مخاطرات محیطی که آسیب پذیری بسیاری از کشورهای دنیا را به دنبال دارد، آغازی نسبتاً تازه دارد. یکی از این خطرها یخبندانها می باشند که سبب زیانهای عظیمی در زمینه های کشاورزی، حمل و نقل، انرژی ، زیست محیطی و غیره شده است. جهت جلوگیری از خطرات ناشی از آنها استفاده از روشهای پیش بینی امکان پیش آگاهی از حداقل دما و رخداد پدیده یخبندان را فراهم ساخته تا مسئولان در جهت جلوگیری از آن، اقدامات لازم را به عمل آورند. پیش بینی حداقل دما در منطقه خصوصاً با روشهای جدید از ضروریات انجام این تحقیق می باشد. با توجه به محدودیت هایی از قبیل عدم کفایت آمار موجود و خطای بالای روش های آماری معمول، در این تحقیق از شبکه های عصبی مصنوعی به عنوان یک روش کارآمد جهت پیش بینی کمینه دما استفاده شدهاست. ورودی مدل،آمار شاخص های اقلیمی SIBERIA, AO[1], NAO[2], TNA[3], SOI[4], PDO[5], TNI[6], NOI[7]ساعات آفتابی منطقه در بازه زمانی(2007–1973) و خروجی مدل داده های کمینه دما می باشد. در این تحقیق از دو روش پس انتشار feedforwardو Radial Basisاستفاده شده است. نتایج نشان داد که بین مدلهای مورد استفاده، Radial Basis ( با ضریب همبستگی 98% و میزان خطای 48%) به عنوان بهترین مدل، نسبت به روش های آماری و مدل feedforward معمول می باشد و همچنین نسبت به دیگر تحقیقات انجام شده در این زمینه از میزان خطای پایین تری برخوردار است. همچنین تنها افزایش فاکتورهای ورودی شبکه عاملی برای افزایش کارایی نمی باشد بلکه استفاده از ورودی هایی که ارتباط معناداری با خروجی شبکه دارند نتایج بهتری را ایجاد خواهد کرد. در نهایت خروجی مدل بیانگر افزایش حداقل دما طی دوره آماری می باشد.
similar resources
پیش بینی دماهای ماهانه ایستگاه های همدید منتخب استان اصفهان، با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه
پیش بینی دما از کاربردی ترین برآوردهای عناصر آب و هوایی است. امروزه بخش های کشاورزی و صنعت وابستگی زیادی به شرایط دمایی (آب و هوا) دارند. دما یکی از فراسنج های بسیار مهم آب و هوایی است و از عوامل اصلی هویت آب و هوایی هر ناحیه محسوب می شود. هدف از انجام این پژوهش، مدل سازی برای پیش بینی میانگین دمای ماهانه ایستگاه های منتخب استان اصفهان است؛ از این رو، پس از بررسی طول دوره آماری ایستگاههای موجود...
full textبررسی و پیش بینی کمینه دمای سالانه و ماهانه با استفاده از شبکه های عصبی مصنوعی، مورد: منطقه کرج
یخبندان یکی از پدیده های مهم و زیان آور مورد مطالعه در اقلیم شناسی می باشد که از دیدگاه کاربردی به بسیاری از فعالیتهای انسانی به ویژه فعالیتهای کشاورزی ارتباط پیدا می کند. لزوم برنامه ریزی در برابر خطرات این پدیده ایجاب می کند تا مطالعاتی بر روی روش های پیش بینی و اثرات سیگنال های اقلیمی بر وقوع کمینه دما صورت گیرد. با توجه به محدودیت هایی از قبیل عدم کفایت آمار و اطلاعات موجود، دقت پایین و خطا...
15 صفحه اولمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...
full textپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...
full textپیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی...
اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و...
full textMy Resources
Journal title
volume 11 issue 40
pages 85- 103
publication date 2018-09-22
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023